Fuzzy nonparametric regression based on local linear smoothing technique

نویسندگان

  • Ning Wang
  • Wen-Xiu Zhang
  • Changlin Mei
چکیده

In a great deal of literature on fuzzy regression analysis, most of research has focused on some predefined parametric forms of fuzzy regression relationships, especially on the fuzzy linear regression models. In many practical situations, it may be unrealistic to predetermine a fuzzy parametric regression relationship. In this paper, a fuzzy nonparametric model with crisp input and LR fuzzy output is considered and, based on the distance measure for fuzzy numbers suggested by Diamond [P. Diamond, Fuzzy least squares, Information Sciences 46 (1988) 141–157], the local linear smoothing technique in statistics with the cross-validation procedure for selecting the optimal value of the smoothing parameter is fuzzified to fit this model. Some simulation experiments are conducted to examine the performance of the proposed method and three real-world datasets are analyzed to illustrate the application of the proposed method. The results demonstrate that the proposed method works quite well not only in producing satisfactory estimate of the fuzzy regression function, but also in reducing the boundary effect significantly. 2007 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...

متن کامل

A Modification on Ridge Estimation for Fuzzy Nonparametric Regression

This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the Lagrangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the crossvalidation procedure for selecting the o...

متن کامل

Variable data driven bandwidth choice in nonparametric quantile regression

The choice of a smoothing parameter or bandwidth is crucial when applying nonparametric regression estimators. In nonparametric mean regression various methods for bandwidth selection exists. But in nonparametric quantile regression bandwidth choice is still an unsolved problem. In this paper a selection procedure for local varying bandwidths based on the asymptotic mean squared error (MSE) of ...

متن کامل

Indirect Adaptive Control with Fuzzy Neural Networks via Kernel Smoothing

In this paper, a neurofuzzy adaptive control framework for discrete-time systems based on kernel smoothing regression is developed. Kernel regression is a nonparametric statistics technique used to determine a regression model where no model assumption has been done. Due to similarity with fuzzy systems, kernel smoothing is used to obtain knowledge about the structure of the fuzzy system and th...

متن کامل

Friedman’s Super Smoother

Friedman’s super smoother is a nonparametric regression estimator based on local linear regression with adaptive bandwidths (Friedman [1984]). The basic idea is to first estimate a number of fixed bandwidth smooths by local linear regression. The leave-one-out cross-validated residuals from each of those initial estimates are then smoothed using a constant bandwidth. Based on the smoothed resid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 177  شماره 

صفحات  -

تاریخ انتشار 2007